DIMLR87 中分步筛选抽样方案 检验方法的验证

□青岛市计量技术研究院 赵易彬 于旭光 牟乃龙

【摘 要】本文主要对分步筛选抽样检验方法的验证。

【关键词】分步筛选方案;检验

前言

在OIMLR87-16中,对于批量较大商品的样本量的选取与我国现行的JJF1070-2005版差异很大。为了减少计量检验人员的工作量,应尽可能地减少检验样本量。若只是简单地减少样本量,又会导致计量检验的错误评定的概率增加。为此,R87-16中引

人一种更为实用的分步筛选抽样的方法: 在增加抽样量的前提下,减少检验人员的工作量,既可使用一个较小的样本量进行检验,又不会导致错误评定的概率增加。

1 分步筛选抽样检验方法的简述

- 1.1 单件商品的检验程序
- (1)确定需检验的检验批N;
- (2)根据 Q_{n} ,确定允许短缺量;
- (3) 从表1 中找出所需的样本量n 的最大值。

表1 分布筛选抽样方法中样本大小(n)的数值和具有了1误差(n_{T1})的可接受的预包装商品的数值

检验批大小(n)		正7取2户 口	用和始坐未上小()	在样本中具有T1 误差(n _{T1}) 的可接受的预包装商品				
最小值	最大值	步骤编号	累积的样本大小(n)	的数量				
	139	1	35	0				
100		2	50	1				
100	139	3	60	2				
		4	75	3				
		1	35	0				
		2	50	1				
140	289	3	65	2				
		4	80	3				
		5	95	4				
	999	1	40	0				
		2	50	1				
290		3	70	2				
290		4	90	3				
		5	100	4				
		6	115	5				
	100000	1	40	0				
		2	55	1				
		3	70	2				
1000		4	95	3				
		5	105	4				
		6	120	5				
		7	135	6				

下面使用N=100-139 及n=75 为例进行解析。

- (4)随机抽取75件商品(初始样本),识别码(#1到#75)。
- (5) 在(6) 到(9) 中, 若有1件 T_2 类短缺商品, 或4件 T_1 类短缺商品,则该检验批评定为不合格。

(6)分步检验的第一步

从初始样本中取35件样品,识别码为#1到#35,检验每件的实际含量。若没有具有 T_1 类短缺的商品,则单件商品满足要求,进入平均实际含量的检验。若有一件、两件或三件商品是 T_1 类短缺的商品,就分别进入(7)、(8) 和(9) 分步检验。

(7)分步检验的第二步

若有一件 T_1 类短缺商品,则从初始样本中再取出样品到识别码为#50,检验其实际含量。若附加样本中没有 T_1 类短缺的商品,则单件商品满足要求,进入平均实际含量的检验。若在已检的样本中,共有两件或三件 T_1 类短缺商品,就分别进入(8)和(9)分步检验。

(8)分步检验的第三步

若50件样品中有两件T₁类短缺商品,则从初始样本中再取出样品到识别码为#60,检验其实际含量。若第二组附加样本中没有T₁类短缺商品,则单件商品满足要求,进入平均实际含量的检验。若在已检的样本中,共有三件T₁类短缺商品,就进入到(9)分步检验。

(9)分步检验的第四步

若60 件样品中有三件 T_1 类短缺商品,则取出剩下的所有样品,识别码直到#75,检验其实际含量。若第三组附加样本中没有 T_1 类短缺的商品,则单件商品满足要求,就进入平均实际含量的检验。

1.2 平均含量要求的检验程序

当单件商品检验通过,我们就已经获得N 和n,使用下式计算SCF。

 $SCF = -T.INV(0.005, n-1)/(SQRT(n \times (N-1)/(N-n)))$

我们可利用Excel 表的功能,输入相应的N 和n就可计算出SCF。

然后,利用确认的SCF,是否满足该式: $q_{ave} \ge (Q_v - SCF \times s)$ 。

若满足,则该检验批满足了平均含量的要求。

当然,若平均实际含量 q_{ave} 大于等于其标注净含量 Q_{av} ,就没有必要再进行SCF等计算了。

1.3 最终评定

若检验批通过了单件商品的要求和平均实际含量要求,则该检验批为合格。

2 抽取样品和皮重样品

- 2.1 在啤酒企业成品库抽样,商品净含量: 600ml,若检验批N=136,查表1,检验批在100-139之间,应抽取样品 $n_{30}=75$,作为初始样本。
- 2.2 在啤酒包装现场,抽取"未使用过的干燥 皮重"25件。

3 计算皮重

- 3.1 从25个皮重样品(啤酒瓶)中,选择10个 皮重样品进行称重,确定每个皮重样品的重量。记 录数据如下:
 - ①487.1g, ②486.1g, ③487.3g, ④486.8g,
 - 5486.8g, 6486.3g, 7486.1g, 8486.9g,
 - 9485.9g, 10486.2g;
 - 3.2 计算这10个皮重样品的平均皮重ATM₁₀

$$ATM_{10}$$
=486.6g

3.3 比较ATM₁₀ 与Q_n×10%

 $Q_n \times 10\% = 600 \text{ml} \times 10\% \times 1.0025 \text{g/cm}^3 = 60.15 \text{g}$

注: 啤酒的密度为1.0025g/cm3

由于 $ATM > Q_n \times 10\%$ (486.6 > 60.15),应计算 皮重的标准偏差。

3.4 皮重的标准偏差

$$s_{TM} = \sqrt{\frac{1}{n_{TM} - 1} \sum_{i=1}^{n_p} (TM_i - ATM)^2} = 0.4859 \text{ (g)}$$

查表,净含量为600ml 商品的允许短缺量T=15ml.

 $0.25T = 0.25 \times 15 = 3.75$ ml ≈ 3.76 g

由于 S_{TM} <0.25T (0.4859 <3.76),需对另外15个皮重样品进行称重。

3.5 对另外15个皮重样品进行称重 确定15个皮重的重量,数据如下:单位:(g)

表2 余下15件的皮重值

487.1	486.1	487.3	486.8	486.8
486.3	486.1	486.9	485.9	486.2
485.7	486.9	486.8	486.8	485.6

486.2	486.3	485.9	487.1	486.5
486.3	486.1	486.9	485.0	486.2

- 3.6 计算这25 个皮重样品的平均皮重 ATM_{25} 平均皮重 ATM_{25} =486.4g
- 3.7 使用这25个皮重的平均皮重 ATM_{25} ,确定商品的实际含量。
 - 4 用分步筛选抽样检验方法进行实际含量检验
 - 4.1 确定需检验的检验批N=136;
 - 4.2 根据Qn=600ml,确定允许短缺量T=15ml;
- 4.3 从表1 中找出所需的样本量n 的最大值, $n_{\partial n}$ =75。

- 4.4 随机抽取75件商品(初始样本),识别码(#1到#75)。
- 4.5 从初始样本中取出35件样品形成一组样本,识别码为#1到#35,并且检验每件商品的实际含量。步骤如下:
- ①首先用数字指示秤,对每个样品的毛重进行称量,称得每个样品的毛重*AGM*;
- ②然后每个样品的毛重 AGM_i 减去平均皮重 ATM_{25} ,获得每个样品的实际含量 q_i ;
 - ③35 件样品检验数据见原始记录表格:

表3 (1~35)号样品的检验数据

编 号	1	2	3	4	5	6	7	8	9	10
毛重 (g)	1093.9	1095.8	1090.7	1095.4	1094.2	1094.3	1092.1	1093.8	1093.1	1093.3
皮重 (g)	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4
实际含量 (ml)	606.0	607.9	602.8	607.5	606.3	606.4	604.2	605.9	605.2	605.4
误差 (ml)	6.0	7.9	2.8	7.5	6.3	6.4	4.2	5.9	5.2	5.4
编 号	11	12	13	14	15	16	17	18	19	20
毛重 (g)	1093.9	1093.1	1092.5	1095.7	1094.1	1095.2	1092.7	1096.6	1070.2	1095.8
皮重 (g)	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4
实际含量 (ml)	606.0	605.2	604.6	607.8	606.2	607.3	604.8	608.7	582.3	607.9
误差 (ml)	6.0	5.2	4.6	7.8	6.2	7.3	4.8	8.7	-17.7	7.9
编 号	21	22	23	24	25	26	27	28	29	30
毛重 (g)	1090.0	1095.6	1091.6	1093.7	1095.9	1093.5	1095.3	1096.1	1092.4	1092.4
皮重 (g)	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4
实际含量 (ml)	602.1	607.7	603.7	605.8	608.0	605.6	607.4	608.2	604.5	604.5
误差 (ml)	2.1	7.7	3.7	5.8	8.0	5.6	7.4	8.2	4.5	4.5
编 号	31	32	33	34	35					
毛重 (g)	1093.3	1093.4	1093.6	1094.6	1095.9					
皮重 (g)	486.4	486.4	486.4	486.4	486.4					
实际含量 (ml)	605.4	605.5	605.7	606.7	608.0					
误差 (ml)	5.4	5.5	5.7	6.7	8.0					

- 4.6 假设在上面的检验数据中出现1件*T*₁类短缺商品(#19),则就应进行分步检验的第二步。
- 4.7 因为出现1件*T_I*类短缺商品,则再从初始 样本中取出样品到识别码为#50,形成一组附加样 本,然后检验这些附加样本的实际含量。步骤如下:
- ①对每个样品的毛重进行称量,称得每个样品的毛重*AGM*;
- ②每个样品的毛重 AGM_i 减去平均皮重 ATM_{25} ,得每个样品的实际含量 q_i ;
 - ③15 件样品检验数据见原始记录表格:

表4 (36~50)号样品的检验数据

编 号	36	37	38	39	40	41	42	43	44	45
毛重 (g)	1097.1	1093.5	1092.1	1092.7	1095.5	1090.3	1096.3	1096.3	1099.1	1096.2
皮重 (g)	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4	486.4
实际含量 (ml)	609.2	605.6	604.2	604.8	607.6	602.4	608.4	608.4	611.2	608.3
误差(ml)	9.2	5.6	4.2	4.8	7.6	2.4	8.4	8.4	11.2	8.3
编 号	46	47	48	49	50					

毛重 (g)	1094.2	1096.2	1095.3	1093.9	1095.6			
皮重 (g)	486.4	486.4	486.4	486.4	486.4			
实际含量 (ml)	606.3	608.3	607.4	606.0	607.7			
误差 (ml)	6.3	8.3	7.4	6.0	7.7			

4.8 在附加样本中没有 T_I 类短缺的商品,则单件商品满足了要求,进入平均实际含量的检验。

4.9 平均含量检验

通过上面的试验,我们已知检验批量N等于136件,进入试验样本量n等于50件。

可利用Excel 表计算SCF(N=136,n=50),则: $SCF = -T.INV(0.005, n-1)/(SQRT(n \times (N-1)/(N-n)))$ =2.9397/8.8594 =0.332

计算50 件样品的平均实际含量 q_{ave} =606.3ml; 标称净含量 Q_n =600ml 由于 $q_{ave}>Q_n$,则该检验批平均含量检验合格。 若 $q_{ave}<Q_n$,假设qave=599.3ml 就应计算样本平均实际含量的修正值 $SCF\times s$ 。 计算样本实际含量标准偏差

S=
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(q_i-q_{ave})^2}$$
=3.926ml

修正值SCF×s =0.332×3.926 ≈1.303 ml

 $Q_{\rm n}$ -SCF $\times s$ =600-(0.377 \times 3.926)=598.7ml 那么 $q_{\rm ave}>Q_{\rm n}$ -CF $\times s$ 则该检验批平均含量检验合格。

4.10 最终评定

若检验批通过了单件商品的要求和平均实际含量要求,则该检验批为合格。

5 结束语

通过试验可以验证此方法是完全行之有效的, 为检验人员的日常检验提供了一个很好的选择,在 不导致错误判断概率增加的情况下,可用较小的样 本进行检验,大大提高了工作效率。

参考文献:

[1] OIML R87-2016.

作者简介: 赵易彬, 男, 汉族, 青岛市计量技术研究院高工, 主要从事衡器和商品量的计量工作。