基于仪器图像识别的自动化测试方法研究

□黄思思¹ 黄家欢² 刘丰¹

(1. 中国电子科技集团第 29 研究所 2. 广州软件学院)

【摘 要】传统的仪器控制主要依赖于封装库实现对仪器的控制和示数读取。然而,由于封装库中只包含一系列常用测试函数,缺乏一些扩展性函数,导致功能无法正常开发。为了确保测试功能的完整性与便利性,本文提出一种基于图像处理的自动化测试方法,首先构建自动化测试框架,将获取的仪器图像通过图像编码传输到上位机,上位机利用色彩通道提取对仪器图像进行处理以获得仪器示数。实验结果表明,本文提出的方法不仅满足了对测试实时性、准确性的要求,也节约了人力成本。

【关键词】图像处理;自动测试;图像编码;仪器控制

文献标识码: B 文章编号: 1003-1870 (2024) 04-0044-03

引言

军工产品因其对质量要求严格决定其测试项目多,因其生产周期短要求其在自动化开发的敏捷性¹¹。中国电子科技集团第29 研究所计量中心对常见仪器的常见功能使用dll 进行封装,但是,由于示波器控制命令多,且示波器种类繁多无法覆盖到每一条测试命令。因此,在开发自动化测试系统时就需要考虑特殊的测量需求,常见的仪器读数方式如图1 所示。某型号产品需要测量信号的幅度值大小以及两个信号在上升沿60% 处的时间差。但计量中心封装的动态库目前并没有覆盖测量延时的函数,因此,需要研究新的方法来实现该测量需求。本文参考前任论文,借鉴衡器测量的相关技术^[2-4],设计出一种基于图像识别的自动化测试方法。

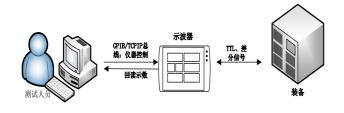


图1 传统仪器读数方式

通过VISA 直接下发指令码,控制仪器需要在编程手册中找到正确的指令码。本系统所使用的《泰克7000C 系列编程手册》有1000 多页,且需要安装对应的NI 软件^[5]。通过摄像头识别万用表显示示数,然后用识别图片的方法来实现,这种方法需要增加额外的硬件需求^[6]。基于图像处理技术完成电梯称重系统的测量,该方法可以拓展到更多领域^[7]。通过Pyvisa 控制仪器,了解仪器底层指令码,且对不同厂家的仪器兼容性不高^[8]。通过Tesseract OCR 对仪器字符识别,该方法使用前提是示波器已经显示了正确的读数^[9]。

本文通过示波器内置截屏插件,上位机通过发送命令控制示波器截图,示波器将截取后的屏幕编码传输回上位机,上位机获取图像后对图像进行解码还原成原图,通过图像处理的方法获得对应的测量参数。该方法具有较强的扩展性,不仅可用于产品性能测量,还可应用于产品重量等物理参数校验过程。

1 自动测试软件框架搭建

测试中, 电脑作为上位机控制示波器端的插件

进行截图,一路脉冲源作为基准输入到示波器,另外一路脉冲源作为测试信号输入到测试设备,测试设备对输入脉冲进行处理,然后将信号返回到示波器,上位机电脑通过获取示波器的截图进行处理,得到对应的电压和延时测试数据,如图2所示。



图2 硬件系统的搭建

2 关键技术及实现

为验证通用性的表格字符图像处理算法的可行性,基于以下平台进行了实验验证。实验软件平台基于Win10系统,Python 3.6语言。示波器采用泰克的DPO7054C,脉冲源使用安捷伦8011A。

(1)客户端、服务端建立

仪器端构建服务端,主要用于响应客户端指令,获取当前测试图像后将图像编码发出到客户端,测试软件端构建客户端,用来给仪器端下发控制指令并对收到的编码信号还原处理。

(2)图像编码

当示波器收到上位机截图指令时,示波器会将调用插件内置的Pillow 库对当前界面的图像进行全屏截取,截取后使用Opencv 的Imencode 函数,对图像进行二进制转换,然后使用Socket 进行编码后的图像传输,当上位机收到传输编码时,使用进行解码,还原成原始图像。

(3)图像处理

首先将客户端返回的图像进行解码,然后还原成原始图像,如图3所示。

图3 示波器图像还原

将波形显示区域进行ROI 截取,然后截取的图像按照通道色进行分离,其中黄色通道分离后,如图4 所示。

图4 通道色分离

将分离后的通道色进行二值化,然后再向图像的Y轴投影后累加求和,如图5所示。

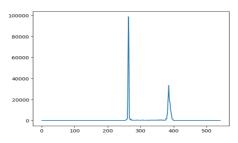


图5 图像在Y轴上的投影

设置图像累加和的检测阀值为20000,通过数组运算得到对应的X 轴坐标分别为 X_1 和 X_2 ,图像的长度为 X_{len} ,图像的高度为 Y_{len} ,仪器设置尺度为 X_{len} ,则计算电压值为:

$$V = \frac{X_2 - X_1}{Y_{len}} \times 10 \times S \tag{1}$$

计算两个信号的延时,首先计算上升沿60% 处的坐标 ΔX

 $\triangle X = X_1 + (X_2 - X_1) \times 0.6$ (2) 截取处的像素在X 轴上的投影在如图6 所示。

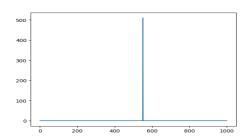


图6 图像在上升沿60%处X轴的投影

在图像X 轴上投影的最大值即为上升沿60% 处的横坐标 ΔX_1 ,则两个信号间的延时即图像的长度为为:

$$\Delta T = \frac{|\Delta X_1 - \Delta X_2|}{X_{len}} \times 10 \times S \tag{3}$$

3 实验结果

本文先后在标准电压和延时的情况下验证读取 示数的准确性,验证结果如下表所示:

表 设置值与读取值比对

测试项	测试 值1	测试 值2	测试 值3	测试 值4	测试 值5
设置 电压	30	80	1.5	3	5
设置 尺度	100mV	100mV	5V	5V	10V
读取 电压	29.7	80.5	1.47	3.05	5.08
设置 延时	100	50	10	20	60
设置 尺度	ns	ns	us	us	us
读取 延时	99.4	50.6	9.8	19.5	60.2

通过手动5次测量电压值和5次测量延时值与自动测试值进行比对,使用误差计算公式:

测试误差 =
$$\frac{|\dot{g}_{\Delta} \otimes d - \partial g_{\Delta}|}{\partial g_{B}} \times 100\%$$
 (4)

对比结果表明,手动设置结果和测量值之间的测试误差为2%,满足实际使用需求。

4 结语

本文设计了一种基于图像处理的自动化测试方 法。实验结果表明,这种方法有着很好的准确性和 实时性,能够不依靠硬件实现数据的精确测量,在 基于视觉测量的衡器技术中有着很好的适用性。

参考文献

- [1] 王森, 黄思思. 特种装备通用自动测试框架及关键技术研究[1]. 电子设计工程,2023(14):148-152.
- [2] 黄现云, 董晨光, 朱浩等. 电子台案秤仪表示值识别优化方案研究[]]. 衡器,2020,49(08):46-48.
- [3] 周祖濂. 有关衡器测量的一些基本知识[J]. 衡器,2023,52(06):49-50.
- [4] 周祖濂. 能抵消皮带张力、提高皮带秤测量精度的新方法[[]. 衡器,2020,49(11):26-29.
- [5] 司毅, 杨威. 通过安捷伦82357B实现基于LabVIEW的频谱数据采集[J]. 测试技术学报,2016,30(05): 438-441.
- [6] 刘洋, 李泓良, 杨宁. 新型的基于图像处理的电梯称重系统[[]. 衡器,2019,48(02):
- [7] 黄建军,李宥谋,刘婧.基于Python语言的自动化测试系统的设计与实现[J].现代电子技术,2017.40(04):39-42
- [8] 阮颐,宋清亮,王甲.基于Python的示波器图像数据识别[]].集成电路应用,2020,37(01):18-19+22.
- [9] 郝琨, 韩冰, 李志圣. 基于投影阈值分割和数字序列校正的高噪声数字仪表图像识别方法 [J]. 电子科技大学学报, 2023,(05): 728-738
- [10] 王慧娟,谢川东,徐阳等.恒温振荡培养箱校准方法研究[I].计量与测试技术,2022,49(12):14-17.
- [11] 沈平, 童德文, 陈郑盟. 基于叶色偏态分布模式的鲜烟叶成熟度判定[J]. 烟草科技, 2021,(08):26-35.
- [12] 纪金龙. 一种热补偿式高精度表面测温仪的研究[1]. 中国计量,2023,(02):72-76.
- [13] 李莉,张琳,徐毅.表面温度源温场校准方法探讨[]].工业计量,2019,29(05):13-14.

作者简介

黄思思,男(1991—),工程师。现任职于中国 电子科技集团公司第29 研究所。